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Abstract. The current paper deals with filtering problems where the observation process,
conditioned on the unknown signal, is an elliptic diffusion in a differentiable manifold. Precisely,
the observation model is given by a stochastic differential equation in the underlying manifold. The
main new idea is to use a Le Jan-Watanabe connection, instead of a usual Levi-Civita connection, in
performing the operation of antidevelopment (both connections can be constructed from a stochastic
differential equation as in the observation model). The following results are obtained. First, it is
shown that antidevelopment reduces the original filtering problem to a classical one, i.e. an additive
white noise model. Second, a new form of the Zakai and filtering equations is derived which has
a structure very similar to that of classical equations. Currently, there are few well understood
general numerical solution methods for filtering problems with observation in a manifold. Reduction
to classical filtering problems seems desirable as it allows proven existing numerical methods for
classical problems to be applied immediately. In view of practical implementation of this approach,
the paper also gives an explicit pathwise construction of the antidevelopment.
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1. Introduction. Stochastic filtering problems where the observation has its
values in a differentiable manifold constitute an important extension of the classical
additive white noise setting. They were studied in the pioneering work of Duncan [1],
which was expanded by Caines [2], and also by Pontier and Szpirglas [3, 4]. While
these two contributions consider different observation models, their overall methodolo-
gies are comparable. Precisely, they combine the machinery of stochastic differential
geometry with standard theoretical tools, based on innovation or on change of proba-
bility. The current paper studies the same model as in [3, 4]. It proceeds along similar
lines, but builds on more recent development in the geometry of diffusions.

While this may be obscured by differences in terminology, the essential operation
from stochastic differential geometry in all the papers just mentioned is stochastic
antidevelopment. Loosely speaking, antidevelopment sets up an equivalence between
processes in a differentiable manifold and processes in a vector space of the same
dimension [6]. In general, this requires a choice of affine connection. This has been
taken to be a Levi-Civita connection in [1] and [3, 4]. In [2], it was an unspecified
metric connection. The idea here is that a significant improvement can be made, in
studying the filtering problem of [3, 4], when a Le Jan-Watanabe connection is used
which is constructed in a specific way from the observation model. This is obtained
by adapting a result in [5].

Using the Le Jan-Watanabe connection leads to a situation where antidevelop-
ment yields a process depending on the unknown signal through an additive white
noise model. In other words, the problem with observation in a manifold is reduced
to an equivalent classical filtering problem. This suggests a two step solution method
where the antidevelopment is first performed to obtain an equivalent classical problem
and this is then solved using an existing classical numerical method. This seems a
desirable approach, in view of the fact that numerical solution of classical filtering
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problems already constitutes a well developed subject [7, 8]. At least at present, this
is far from being the case for filtering with observation in a manifold.

The main difference among [1, 2] and [3, 4] is the following. In the former, the
observation model is given by a horizontal stochastic differential equation in the frame
bundle of the underlying manifold. In the latter, the stochastic differential equation
is directly on the manifold itself. In the current paper, the latter model is pursued
since it is related to a great number of engineering applications; see Subsection 1.1.
The stochastic differential equation in the frame bundle contains in advance (as part
of the model) the dependence of the antidevelopment on the unknown signal. On
the contrary, for the observation model considered here, the required dependence is
uncovered by using an adequate connection.

This paper only considers continuous time observation. In fact, for purposes such
as filtering, it is easier to consider continuous time than discrete time processes in
manifolds; roughly speaking, there is no suitable definition for discrete time mar-
tingales in manifolds [9]. Still, a useful approach is to discretise the continuous time
observation in order to obtain an approximate discrete observation problem. This was
used by Solo to derive unnormalised filtering equations [10]. The rate of convergence,
when a similar discretisation is applied to the model of [1, 2], was established in [11].

The following Subsection 1.1 motivates the approach taken in this paper through
a special case due to Lo [15]. Subsection 1.2 describes the notation used and the main
results stated in the following. The aim of the current paper is to provide systematic
foundation for the two step solution method proposed above. Its implementation,
numerical aspects and various applications will be the focus of future work. Here, it
may be interesting to point out that reduction to a classical problem can also be used
to solve theoretical questions; e.g. existence and uniqueness of solutions, existence
of a filtering density with respect to some reference measure. Indeed [7], many such
questions are solved in the classical case and the required conditions can be easily
translated into conditions for the problem with observation in a manifold.

1.1. Motivation, preliminary example. Many engineering applications in-
volve continuous time observations of the state of orientation or of configuration of a
noisy physical system. Often, when such observations are possible, it is well known
they are accurately described using stochastic differential equation in classical matrix
manifolds [12, 13]. Local characteristics of such diffusions correspond to dynamical
variables and may be controlled using inputs. As such, the problem of their estima-
tion from observations will arise in practice. The current paper was motivated by the
generalisation of the treatment in the following example.

Assume given observations of the attitude of a rigid body. Rigid body dynamics
reduces to that of the angular velocity, which is controlled by torques. This reduction
of dynamics is related to the existence of an underlying Lie group structure. In the
engineering literature, techniques which take this group structure into account and
rigorously employ stochastic calculus were developed by Willsky and Lo [14, 15]. Lo’s
paper [15] uses a formulation involving a general matrix Lie group. This leads to
a unified treatment of several applications; e.g. frequency modulation and power
conversion, in addition to the problem of attitude control.

Here is a “derivation” for the above example. The angular velocity u ∈ R3 of
a rigid body is subject to Euler’s equations [16]. If the three principal moments of
inertia are equal to a common value J , this has a simple form

Ju = x+ w ẋ = Q (1.1)
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where Q ∈ R3 is the applied torque. When the practical aim is to monitor the effect
of unknown torques (e.g. actuator failures), the problem arises of tracking x. Noise
is modeled by a stationary Gaussian process w with short correlation time.

Instead of u ∈ R3, consider the cross product matrix û given by ûz = u × z for
z ∈ R3. The attitude of the rigid body is given by a proper orthogonal matrix Y ,
governed by left invariant kinematics

Ẏ = Y û (1.2)

When w has negligible correlation time, it may be considered as a white noise process
σḂ, for some σ > 0 and a Brownian motion B ∈ R3. Equation (1.2) becomes a
stochastic differential equation (the circle denotes a Stratonovich differential)

dYt = Yt ◦ dyt dyt = (1/J)
{
x̂tdt+ σdB̂t

}
(1.3)

where the hat notation is the same as for û. The model (1.3) is essentially the one
studied in [15]. The main idea used therein is that there is an equivalence between
the paths (or trajectories) of y and those of Y . If a path of y is known, then solving a
linear stochastic differential equation gives a corresponding path of Y . In the current
example, one has access to an observed path of Y . Similarly, a corresponding path of
y is given by a stochastic integral

yt =

∫ t

0

Y −1
s ◦ dYs (1.4)

It follows from (1.3) that the process Y is a diffusion with values in the special orthog-
onal group SO(3). Its local characteristics of drift and local diffusion are contained
in the process y. This process has its values in so(3), the Lie algebra of SO(3).

The relation among the observation Y and the unknown signal x falls outside the
framework of classical filtering problems. This is not the case for the relation among
y and x, to which one could apply the Kalman-Bucy filter. Thus, it is seen that
(1.4) reduces a problem with observation in a matrix manifold to a classical filtering
problem. In fact, these two problems are equivalent, due to the relation between Y
and y.

While Lo realised (1.4) could be applied for the paticular model (1.3), no similar
reduction has been obtained for more general models; or even very similar ones where
the observation does not have its values in a Lie group but in a homogeneous space.
The current paper extends (1.4) to the general model of [3, 4], which is recalled in the
following subsection.

1.2. Notation and main results. The approach reviewed in the previous sub-
section can be extended to the case where the observation is an elliptic diffusion in a
differentiable manifold. To present this a clear way, here is some basic notation.

Let M be a C3 manifold of dimension d and (Ω,A,P) a complete probability
space. On Ω, it is assumed two independent processes x and B are defined. The
process x takes its values in some Polish space (S,S), while B is a standard Brownian
motion in Rd. On M , it is assumed C2 vector fields (Σr; r = 1, . . . ,m) are given. With
very little loss of generality, it is assumed M has a countable atlas. This is the case
as soon as M is connected and paracompact. The augmented natural filtration of x is
denoted X . The sensor function is an application H : R+ ×Ω×M → TM . This is a
random time dependent vector field (t, ω, p) 7→ Ht(ω, p). For p ∈M , it is required the
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process(Ht(p); t ≥ 0) in TpM given by Ht(p)(ω) = Ht(ω, p) is X -adapted; a typical
example is when Ht(ω, p) = Ht(xt(ω), p). For ω ∈ Ω, it is required the application
(t, p) 7→ Ht(ω, p) is jointly C1. The observation Y is assumed nonexplosive (i.e. for
p ∈M , if Y0 = p then Yt is defined with values in M for t ≥ 0) and satisfying

dYt = Ht(Yt)dt+ Σr(Yt) ◦ dBrt (1.5)

Here and in all the following, summation convention is understood. A further condi-
tion will be imposed on the Σr to ensure Y conditioned on x is an elliptic diffusion;
see Subsection 2.2. The augmented natural filtration of Y is denoted Y. The filtering
problem consists in finding the conditional distribution πt of xt given Yt for all t ≥ 0.
As already stated, the model (1.5) is the same as in [3, 4].

The main results are Theorems 2.1 and 4.1 below, in addition to Theorem 3.1.
Theorem 2.1 gives a construction generalising (1.4) to the model (1.5). That is, it
defines a process y which has values in Rd, depends on x in terms of an additive white
noise model and is equivalent to Y (in the same sense as considered above). This is
based on an adaptation of a result in [5]. While the construction in (1.4) follows by
applying the chain rule to (1.3), that of Theorem 2.1 uses the machinery of stochastic
differential geometry. Necessary background for this is provided in Subsection 2.1.

Theorem 3.1 is an application of Theorem 2.1. It requires the usual assumption
that x is a time invariant Markov process; this is stated precisely in Section 3. Theo-
rem 2.1 reduces the model (1.5) to an additive white noise model, for which filtering
equations are readily available. This allows a new form of the filtering equations
of [3, 4] to be recovered, by writing Y in terms of y.

Finally, Theorem 4.1 gives a practical implementation of Theorem 2.1, in the form
of a pathwise construction of y. A pathwise construction is a function which maps
the paths of Y into those of y. In the special case of (1.3) and (1.4), this was realised
in [21]. The construction of Theorem 4.1 extends the same general technique, which
was given in [20]. In a filtering problem, only an individual path of the observation
Y is available. Pathwise constructions are then helpful as they lead to almost sure
convergence and are robust to changes in the underlying model; see discussion in [17].

From an applied perspective, the construction of Theorem 4.1 is based on an Euler
scheme but with event based sampling rather than periodic sampling. In general, an
Euler scheme with periodic sampling is only convergent in probability.

The paper closes with Sections 5 and 6. Section 5 considers a particular example
of Theorem 2.1. This example is meant to capture the geometric nature of the con-
struction of (1.4). Section 6 gives some general remarks on the validity, application
and further extension of the current approach.

2. Reduction to a classical problem.

2.1. Stochastic antidevelopment. As explained above, Theorem 2.1 uses the
machinery of stochastic differential geometry. Precisely, it applies a transformation
known as stochastic antidevelopment. The current subsection provides a succinct
presentation of this concept. Prerequisites from differential geometry correspond to
the first chapter of [23]. For an elegant and comprehensive introduction to stochastic
differential geometry, see [22]. Stochastic differential geometry deals with semimartin-
gales in manifolds. In order to study them, it uses affine connections. In differen-
tial geometry, affine connections distinguish certain differentiable curves as geodesics.
Similarly, in stochastic differential geometry, they distinguish certain processes as
being martingales. All processes in the following are pathwise continuous.
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Knowing the process Y is of the form (1.5), it is natural to work with a connection
which reflects the geometry of the vector fields Σr. This is introduced in the following
Subsection. For now, let ∇ be any affine connection on M . The first definitions are
of Stratonovich and Itô integrals along Y . Let F = (Ft; t ≥ 0) where Ft = X∞ ∨ Bt.
Here, X∞ = ∨t≥0Xt and B is the augmented natural filtration of B. A stochastic
integrand θ is an F-adapted process with values in T ∗M , which is above Y . This
means θt ∈ T ∗Yt

M for t ≥ 0.
Let (θt, ·) denote the application of the linear form θt. The Stratonovich and

Itô integrals of θ along Y are real valued F-adapted processes with the following
differentials

(θt, ◦dY ) = (θt, H)dt+ (θt,Σr) ◦ dBrt (2.1)

(θt, dY ) = {(θt, H) + (1/2)(θt,∇ΣrΣr)} dt+ (θt,Σr)dB
r
t (2.2)

The Stratonovich differential does not involve the chosen connection. On the other
hand, the connection appears explicitly in the Itô differential. Now, Y is called a
∇-martingale if H + (1/2)∇Σr

Σr ≡ 0.In this case, (θ, dY ) is a martingale differential,
just like a usual Itô differential.

The case of interest will be when a Riemannian metric 〈·, ·〉 is introduced on
M . Given a process E which is F-adapted with values in TM and above Y ; (similar
meaning to above). A corresponding process θ in T ∗M is then given by (θt, ·) = 〈Et, ·〉.
The resulting differentials of (2.1) and (2.2) are written 〈Et, ◦dY 〉 and 〈Et, dY 〉. A
process such as E is called a vector field along Y .

In order to formulate the concept of antidevelopment, it is necessary to define what
it means for E to be parallel (i.e. along Y ). If the paths of Y were differentiable,
this would have the usual meaning from differential geometry. While this is not the
case, due the presence of Brownian terms, it is still possible to introduce a stochastic
covariant derivative of E and require this to vanish. Thus E is said to be parallel if

∇◦dY Et = 0 (2.3)

where the left hand side is the stochastic convariant derivative. In order to give this
a precise meaning, consider first the case where G is a C1 vector field on M and
E = G(Yt). Assuming the usual properties of an affine connection, (1.5) would give

∇◦dYG(Yt) = ∇HG(Yt)dt+∇Σr
G(Yt) ◦ dBrt (2.4)

This is extended to a general vector field E along Y by the following transformation.
For a C2 function f onM , let∇2f be the Hessian of f with respect to∇. By definition,
∇HGf = ∇2f(H,G) −HGf and similarly for ∇Σr

G. Now, (θt, ·) = ∇2f(·, Et) is a
process in T ∗M as in (2.1). Thus, (2.4) can be generalised by writing

∇◦dY Etf = dEtf −∇2f(◦dY,Et) (2.5)

which is taken as the definition of the stochastic covariant derivative. In integral
notation, (2.5) defines a vector field

∫ t
0
∇◦dY Es along Y . For any C2 function f on

M , this verifies ∫ t

0

∇◦dY Esf = Etf − E0f −
∫ t

0

∇2f(◦dY,Es)
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Assume now the connection ∇ is compatible with the metric 〈·, ·〉. Again, if the
usual properties of an affine connection were assumed, one would expect the following
property. If E,K are vector fields along Y , then

d〈Et,Kt〉 = 〈∇◦dY Et,Kt〉+ 〈Et,∇◦dYKt〉 (2.6)

It will be shown below that this identity indeed holds. In conclusion, it is possible to
perform calculations involving ∇◦dY jut like in differential geometry, by treating ◦dY
as the tangent vector to the process Y .

Now, it is possible to define the antidevelopment of Y . This is a process y which
has values in Rd. A parallel orthonormal frame is a family (Ei) ≡ (Ei; i = 1, . . . , d)
of vector fields along Y which verify (2.3) and 〈Ei0, E

j
0〉 = δij . In this case, it follows

from (2.6) that 〈Eit , E
j
t 〉 = δij for t ≥ 0. Given a parallel orthonormal frame (Ei), the

process y is defined by

yit =

∫ t

0

〈Eis, ◦dY 〉 (2.7)

It seems this definition is arbitrary, due to the issue of uniqueness of a parallel or-
thonormal frame. However, the classical uniqueness result for linear stochastic differ-
ential equations can be used to show y is essentially unique. In fact, (Ei) is determined
by (Ei0) so that different choices of (Ei) only amount to y being multiplied by an or-
thogonal matrix; for this, the reader could refer to [22].

An interesting property for the following is that a Stratonovich integral along Y
can also be written as an integral along y. For instance, in the notation of (2.1), it is
immediate from the chain rule

(θt, ◦dY ) = θi(t) ◦ dyit where θi(t) = (θt, E
i
t) (2.8)

Indeed, (θt, ·) = θi(t)〈Eit , ·〉.
To close this subsection, the proof of (2.6) is given. This uses for the first time

the assumption that M has a countable atlas; say {(Uκ, zκ);κ ∈ N}. The shortest
way of applying this assumption follows [22].

Fix a chart (Uκ0
, zκ0

) ≡ (U, z). Assume S, T are predictable stopping times with
S ≤ T and Y ∈ U on the stochastic interval [S, T ] ∩ {S < T}. Let ρ(t) = t ∨ S ∧ T
and Ỹ the process Ỹt = Yρ(t).

Reducing to the probability subspace {S < T} ⊂ Ω, the process Ỹ has its values
in U and is adapted to Fρ. Moreover, in local coordinates zt = z(Ỹt),

〈Et∧T ,Kt∧T 〉 − 〈Et∧S ,Kt∧S〉 = gij(zt)e
i
tk
j
t − gij(z0)ei0k

j
0 (2.9)

where Eρ(t) = eit∂i and Kρ(t) = kit∂i, with ∂i = ∂/∂zi, and gij is the metric tensor in
the coordinates z. Applying the product rule, the left hand side of (2.9) reads∫ t

0

∂lgij(zs)e
i
sk
j
s ◦ dzls +

∫ t

0

gij(zs)k
j
s ◦ deis +

∫ t

0

gij(zs)e
i
s ◦ dkjs

If the connection ∇ is represented by Christoffel symbols Γlij , then it is possible to
replace from the following identity

∂lgij = Γmli gmj + Γmlj gmi
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The left hand side of (2.9) finally becomes∫ t

0

gij(zs)k
j
s

{
◦deis + Γilm(zs)e

m
s ◦ dzls

}
+

∫ t

0

gij(zs)e
i
s

{
◦dkjs + Γjlm(zs)k

m
s ◦ dzls

}
On the other hand, (2.5) can be applied to the functions f ≡ zi. This gives,

∇◦dY Ẽt =
{
◦deit + Γilm(zt)e

m
t ◦ dzlt

}
∂i (2.10)

where Ẽ is the process Ẽt = Eρ(t). By identification and time change, (2.9) finally
reads

〈Et∧T ,Kt∧T 〉 − 〈Et∧S ,Kt∧S〉 =

∫ t∧T

t∧S
〈∇◦dY Es,Ks〉+

∫ t∧T

t∧S
〈Es,∇◦dYKs〉

Under the assumption of countable atlas, this calculation can be exploited using the
following result. There exist predictable stopping times (Tn;n ∈ N) where T0 = 0
with Tn ↑ ∞ and each pair Tn ≤ Tn+1 being of the form S ≤ T above, for some chart(
Uκ(n), zκ(n)

)
. While this is useful in proving results such as (2.6), it should be kept

in mind there is no explicit construction of the stopping times Tn.

2.2. The Le Jan-Watanabe connection. As discussed in Subsection 1.2, the
aim of Theorem 2.1 is to reduce the filtering problem of (1.5) to a classical one. This
amounts to replacing the process Y with values in M by a process y with values in Rd,
given as in (2.7). In order for y to have the required properties, a suitable choice of the
affine connection ∇ must be made. In fact, ∇ will be the so called Le Jan-Watanabe
connection corresponding to the vector fields Σr.

For p ∈M , let Σp be the subspace of TpM spanned by the Σr(p). If, independently
of p, this is Σp = TpM , then Y is said to be an elliptic diffusion (conditioned on x).
In [3, 4], this assumption is used as follows. If Y is elliptic, elementary linear algebra
implies there exists a unique Riemannian metric 〈·, ·〉 such that,

〈E,K〉 = 〈E,Σr(p)〉〈K,Σr(p)〉 E,K ∈ TpM (2.11)

Then, (2.7) is evaluated using the Levi-Civita connection of 〈·, ·〉. This will not be
the case in the following. In fact, choosing the Le Jan-Watanabe connection over the
Levi-Civita connection leads to the simplification described in Theorem 2.1.

The Le Jan-Watanabe connection is defined based on [5]. Let E be any C1 vector
field on M . It follows from (2.11), this can be written E = ErΣr where Er = 〈E,Σr〉.
For K ∈ TpM , let

∇KE = (KEr)Σr(p) (2.12)

It is readily checked this defines an affine connection ∇ compatible with 〈·, ·〉. Pre-
cisely, for C1 vector fields E,G on M ,

K〈E,G〉 = (KEr)Gr + Er(KGr) = 〈∇KE,G〉+ 〈E,∇KG〉 (2.13)

where (2.11) and (2.12) have been used.
The connection ∇ is known as the Le Jan-Watanabe connection. With regard to

the proof of Theorem 2.1, the only necessary property of ∇ is

∇Σr
Σr = 0 (2.14)
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Recall here the summation convention implies summation over r. To obtain (2.14),
replace (2.11) in (2.12). Since Σr is a derivation,

∇Σr
Σr = Σr〈Σr,Σv〉Σv = Σr〈Σr,Σw〉〈Σv,Σw〉Σv + 〈Σr,Σw〉Σr〈Σv,Σw〉Σv

A simplification of the right hand side gives

∇Σr
Σr = Σr〈Σr,Σw〉Σw + Σw〈Σw,Σv〉Σv = ∇Σr

Σr +∇Σw
Σw

which immediately gives (2.14).
Theorem 2.1. Let (Ei) be a parallel orthonormal frame and y given by (2.7),

where the connection ∇ is defined by (2.12). Also, let Ȳ be the augmented natural
filtration of y. Then, y has its values in Rd. Moreover, for t ≥ 0, Ȳt = Yt and

dyt = htdt+ dβt hit = 〈Eit , H〉 (2.15)

where β is a Brownian motion in Rd which is independent from x.
Proof. By definition, y has its values in Rd. The proof of the second claim, i.e.

Ȳt = Yt, is identical to that of the analogous claim made in [3]. To avoid repetition,
the reader is referred to Theorem IV.3 on page 135 of [3].

In order to obtain (2.15) define first

βit =

∫ t

0

〈Eis,Σr〉dBrs (2.16)

Clearly, β is an F-local martingale. Moreover, (2.11) implies∫ t

0

〈Eis,Σr〉〈Ejs ,Σr〉ds = δij

∫ t

0

ds

By Lévy’s characterisation, β is an F-Brownian motion. Since F0 = X∞, it follows β
is independent from x.

From (2.1) and (2.7),

dyt = htdt+

∫ t

0

〈Eis,Σr〉 ◦ dBrs

Given (2.16), it is clear (2.15) follows by showing the Stratonovich integral can be
replaced by an Itô integral. Now, (2.6) and (2.4) imply

d〈Eit ,Σr〉 = 〈Eit ,∇HΣr(Yt)〉dt+ 〈Eit ,∇Σr
Σr(Yt)〉 ◦ dBr

where the fact that Ei verifies (2.3) has been used. It is finally possible to write

〈Eis,Σr〉 ◦ dBrs = 〈Eis,Σr〉dBrs +
1

2
〈Eit ,∇Σr

Σr(Yt)〉dt

but then (2.14) implies the last term is zero.
As already stated in Subsection 1.2, Theorem 2.1 is an adaptation of a result

in [5]. In fact, this reference studies the more general case where Y is a semielliptic
diffusion rather than an elliptic one. The process y then has a form somewhat different
from the one in (2.15). In the current paper, obtaining (2.15) is in itself considered
an important result, since this expression realises two objectives. First, it describes
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a classical filtering problem. Indeed, dy depends on x through h with independent
additive white noise dβ. Second, along with equations (1.5) and (2.7), it generalises
the setting of [15] as described in Subsection 1.1. These two aspects will be developed
in Sections 3 and 5, respectively.

In anticipation of Section 5 note the following difference between (1.4) and (2.7).
In the first case, y is computed directly from Y . That is, no other process is explicitly
involved. On the other hand, computing y in (2.7) first requires finding the parallel
orthonormal frame (Ei).

3. Recovering the filtering equations. Theorem 2.1 leads to a useful sim-
plification of the filtering problem (1.5), described in Subsection 1.2. The statement
that Ȳt = Yt implies the conditional distribution πt can be computed from Ȳt instead
of Yt. However, Ȳ being the natural filtration of y, it is clear πt can be found by a
slight modification of classical filtering equations.

A simple approach to deriving the filtering equations satisfied by πt offers itself.
This consists in finding the classical filtering equations giving πt as a functional of y
and then expressing Y in terms of y. This is precisely the subject of Theorem 3.1,
presented in the current subsection.

The following will draw on standard techniques in stochastic filtering described
in [7]. As usual, πt is found from its application to test functions, i.e. bounded
continuous functions ϕ : S → R. Indeed, π is determined up to modification by

πt(ϕ) = E [ϕ(xt)|Yt] (3.1)

where it is assumed π is a Y-adapted process with values in the space of probability
measures on S; this latter space is given its weak topology. A standard assumption
in deriving the filtering equations is that the process x is a time invariant Markov
process. It is assumed x has generator A defined on D(A), a dense subspace of the
space of test functions, containing the constant function 1. For ϕ ∈ D(A),

dϕ(xt) = Aϕ(xt)dt+ dMϕ
t (3.2)

where Mϕ is an X -martingale. The distribution of x0 is denoted µ. Recall x has a
càdlàg modification [25].

It seems necessary to extend the notation of (3.1) beyond the class of test func-
tions. For an F-adapted process η with E|ηt| < ∞, the expression πt(η) will stand
for the conditional expectation E[ηt|Yt]. Note that η can be real or vector valued.

Theorem 3.1. Assume Y0 = p for some p ∈ M and ‖H‖ is bounded, where
‖H‖2 = 〈H,H〉. Assume also x verifies (3.2). The process π of (3.1) has a càdlàg
modification satisfying π0 = µ and solving the Kushner-Stratonovich equation

dπt(ϕ) = πt(Aϕ)dt+ 〈πt(ϕH)− πt(ϕ)πt(H), dIt〉 (3.3)

for ϕ ∈ D(A). Here 〈·, dIt〉 = 〈·, dYt − πt(H)dt〉.
Proof. The proof will apply the change of probability method to (2.15). This

yields the Zakai equation as a byproduct. Application of the change of probability
method to (2.15) is a standard procedure, see [7]. Thus, the focus will be on showing
necessary technical conditions hold and on obtaining the equation (3.3) from the
classical Kushner-Stratonovich equation, which involves y.

Following [25], it can be shown Y is F-adapted. By Theorem 2.1, the same is
then true for y. Recall also, β is an F-Brownian motion. Since ‖H‖ is bounded, the
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Cauchy-Schwarz inequality and (2.15) imply h is bounded. It follows Z defined below
is a square integrable martingale, († stand for the transpose),

Zt = exp

(
−
∫ t

0

h†sdβs −
1

2

∫ t

0

h†shsds

)
(3.4)

Using the fact that Y is continuous it can be seen H(Y ) and thus h are continuous
F-adapted. This ensures the stochastic integral under the exponential is well defined.

Given Z is a square integrable martingale, it becomes possible to follow the same
steps as in [7]. Consider the probability measures P̃t on Ft given by dP̃t = ZtdP.
These are compatible and together define a probability measure P̃ on ∪t≥0Ft. Then,

under P̃, y is an F-Brownian motion and so independent from x. Moreover, the
process π is given by the Kallianpur-Striebel formula,

πt(ϕ) =
ρt(ϕ)

ρt(1)
ρt(ϕ) = Ẽ

[
ϕ(xt)Z̃t|Ȳ

]
(3.5)

where Ẽ denotes expectation under P̃ and

Z̃t = exp

(∫ t

0

h†sdys −
1

2

∫ t

0

h†shsds

)
(3.6)

That π0 = µ follows from the fact that Y0 = p is deterministic. Existence of a càdlàg
version of π is a result of the fact that x has a càdlàg modification.

Clearly, the filtration F is right continuous. Applying the product rule to ϕ(x)Z̃
and using (3.2) and independence of x and y, it is possible to obtain the Zakai equation

dρt(ϕ) = ρt(Aϕ)dt+ ρt(ϕh
†)dyt (3.7)

and the Kushner-Stratonovich equation

dπt(ϕ) = πt(Aϕ)dt+
[
πt(ϕh

†)− πt(ϕ)πt(h
†)
]
dit (3.8)

where dit = dyt − πt(h)dt.
Now, the main claim is that (3.8) is equivalent to (3.3). Both equations have

the same term πt(Aϕ)dt on the right hand side. Thus, it is enough to compare the
“innovation” terms. Starting with (3.8), note from (2.15)

πt(ϕh
†)dyt = 〈πt(ϕH), Ei〉〈Eit , ◦dY 〉

Applying (2.15) again, along with (2.2) and (2.14), shows this can also be written

πt(ϕh
†)dyt = 〈πt(ϕH), Ei〉〈Eit , dY 〉 = 〈πt(ϕH), dY 〉

In a similar way,

πt(ϕh
†)πt(h)dt = 〈πt(ϕH), Ei〉〈πt(H), Ei〉dt = 〈πt(ϕH), πt(H)〉dt

For the remaining terms, the same calculation can be repeated but with πt(ϕ) replac-
ing ϕ. The proof is then complete.

Here are some comments on Theorem 3.1. First, the hypothesis of bounded ‖H‖
is clearly too strong. It can be replaced by any hypothesis guarantying that Z defined
in (3.4) is a martingale (not necessarily square integrable). Of course, the point here
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is more the geometric formulation of (3.3) than the technical conditions required from
stochastic calculus.

Second, the transformation of (3.8) to (3.3) can also be applied to (3.7). This
gives the Zakai equation

dρt(ϕ) = ρt(Aϕ)dt+ 〈ρt(ϕH), dY 〉 (3.9)

which has the advantage of being linear. Note also, since A1 = 0 from (3.2),

ρt(1) = exp

(∫ t

0

〈πs(H), dY 〉 − 1

2

∫ t

0

‖πs(H)‖2ds
)

(3.10)

Finally, it is important to note equations (3.3) and (3.9) have a simpler form than
the equivalent ones in [3, 4]. This is because using the Le Jan-Watanabe connection
leads to a more adequate expression for the Itô integral along Y . For example, in [3],
the innovation dIt is written dIt = (Ht − πt(H))dt + Σr(Yt)dB

r
t . If the Levi-Civita

connection is used, this cannot be expressed as an Itô integral along Y . Due to the
same difficulty, the Zakai equation given in [4] involves two additional terms and ends
up being a Stratonovich equation.

4. Pathwise construction of y. Theorem 2.1 suggests the filtering problem
(1.5) can be tackled in two steps. First, computing the process y from (2.7). Second,
since y satisfies (2.15), applying a classical method of solution; in other words, using
y as the input of a classical filtering algorithm. In the current section, a practical
implementation of the first step is described.

In a realistic filtering situation, available observation takes the form on an individ-
ual path of the process Y . Formally, this is the function Ŷ (t) = Yt(ω) for t ≥ 0, where
ω ∈ Ω is fixed. Of course, Ŷ can only be sampled at discrete intervals. Rather than the
usual requirement of periodic sampling (i.e. samples obtained at regular intervals),
the implementation given below uses event based sampling. This is a widespread
technique, generally considered more adequate for many of the applications hinted at
in Subsection 1.1; see [26].

Calculations will be carried out using a countable atlas {(Uκ, zκ);κ ∈ N}. This
is required to have the property that, for any differentiable function f on M and any
κ ∈ N, the local representative f ◦ z−1

κ is bounded. Recall the assumption that M
has countable atlas. As is well known in differential geometry [24], this implies the
existence of a locally finite compatible atlas {(Vκ, zκ);κ ∈ N} where Uκ = z−1

κ (D1)
form an open cover of M ; here D1 is the open unit ball in Rd. Thus, one could restrict
attention to Uκ constructed in this way.

A pathwise construction of y is usually given by defining a function which maps
the paths of Y into those of y. To describe this more precisely, let Ω1 = C(R+,M)
and Ω2 = C(R+,Rd) be the spaces of continuous functions from R+ to M and to Rd.
Both are considered with the topology of local uniform convergence.

Without loss of generality, it is assumed functions Ŷ defined as above are con-
tinuous for all ω ∈ Ω. The process Y can then be written as a measurable function
Y : Ω → Ω1. That is, Y (ω) = Ŷ . Similarly, it is assumed y : Ω → Ω2. A pathwise
construction is then given by a function L : Ω1 → Ω2 such that L◦Y is a modification
of y. Moreover, L is required to be measurable.

In order to localise the paths of Y to coordinate charts, consider the stopping times
(τn;n ∈ N) defined as follows. Let τ0 = 0. For κ ∈ N, let τκ1 = inf{t ≥ 0, Yt /∈ Uκ}.
Define τ1 = supκ τ

κ
1 . Assume τn has been defined, then τn+1 is obtained in the same

way. Let τκn+1 = inf{t ≥ τn, Yt /∈ Uκ} and define τn+1 = supκ τ
κ
n+1.
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It is easily seen (τn;n ∈ N) is a strictly increasing sequence of predictable stopping
times (with respect to Y) and τn ↑ ∞. For n ∈ N and ω ∈ Ω, there exists κn ≡ κ(n, ω)
such that Yt(ω) ∈ Ūκn for τn(ω) ≤ t ≤ τn+1(ω); where Ūκn is the closure of Uκn . It
is possible to choose κn such that it is Yτn+1-measurable.

Theorem 4.1. Let (Ei) be a parallel orthonormal frame and y given by (2.7).
There exists a measurable L : Ω1 → Ω2 such that L ◦ Y is a modification of y.

Proof. L can be constructed recursively. For n ∈ N, assume given a measurable
Ln : Ω1 → Ω2 such that Ln ◦ Y is a modification of yτn ; that is, of the process y
stopped at τn. The aim is to construct Ln+1 with a similar property for yτn+1 . Let
σ(t) = (τn + t) ∧ τn+1 and Ỹ and Ẽi the processes Ỹt = Yσ(t) and Ẽit = Eiσ(t). Also,

let B̃ be the Brownian motion in Rm where B̃t = Bτn+t −Bτn . Consider the process
ỹ defined by ỹt = yσ(t) − yτn . Note here τn is an F-stopping time, since it is a Y-
stopping time. The processes just defined are Fσ-adapted. Fix an arbitrary κ ∈ N
and reduce to the probability subspace {κn = κ}. Then, Ỹ has its values in Ūκ. In
local coordinates zt = zκ(Ỹt), let Ẽit = eji (t)∂j where ∂j = ∂/∂zjκ. Then, z and eji
verify the following stochastic differential equations

deji (t) = −Γjlm(zt)e
m
i (t) ◦ dzlt (4.1)

dzlt =
[
hl(zt) + (1/2)σmr (zt)∂mσ

l
r(zt)

]
dt+ σlr(zt)dB̃

r
t (4.2)

Here, hl and σlr are local representatives of H and Σr; Γjlm are Christoffel symbols.
By construction of Uκ, these are assumed to be functions defined on Rd which are
differentiable and bounded along with their derivatives. The same assumption is made
in the following for other local expressions. The process ỹ can be written in matrix
notation, (when passing to matrix notation, superscripts number matrix rows and
subscripts number matrix columns)

ỹt =

∫ t

0

vt ◦ dzt (4.3)

Here, the matrix vt has elements vil(t) given by vil(t)e
l
j(t) = δij . Indeed, this follows

from the definition of ỹ and orthonormality of (Ẽi). Applying the product rule to
(4.1), it follows from the definition of vt that

dvt = vtdΓ̄t (4.4)

Note that this equation has been written in Itô form. Here, dΓ̄t has matrix elements
Γklj(zt)dz

l
t +Rkj (zt)dt where 2Rkj = gml∂mΓklj + glpΓkpmΓmlj . In order to obtain Ln+1 it

is enough to construct `n+1 : Ω2 → Ω2 measurable such that `n+1 ◦z is a modification
of ỹ; note again the assumption z, ỹ : Ω → Ω2. Indeed, Ln+1 can then be obtained
from `n+1 by composing with zκ and adding to Ln.

Since (4.4) is linear, it is enough to consider the case v0 = Id, the d× d identity
matrix. For lighter notation, let ` ≡ `n+1. This is defined following [20]. Precisely, `
is obtained as a limit of continuous functions (`k; k ∈ N). For k ∈ N and ẑ ∈ Ω2 let
ak0(ẑ) = 0 and define akj for j ≥ 1 by akj+1(ẑ) = inf{t > akj (ẑ), |ẑt − ẑ(akj (ẑ))| ≥ 2−k}.
Here, | · | is the Euclidean norm in Rd. The image ŷ = `k(ẑ) of ẑ is given by the
following formula,

ŷ(t) =
∑
j≥0

v̂(akj (ẑ))∆k
j ẑ(t) +

∑
j≥0

v̂(akj (ẑ))q(akj (ẑ))∆n
i (t) (4.5)
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where q ∈ Ω2 has coordinates qk = gjl(ẑ)Γklj(ẑ) and v̂ is the matrix valued function

v̂(t) =
∏
j≥0

[
Id + ∆k

j Γ̂(t)
]

(4.6)

Here, ∆k
j Γ̂(t) has matrix elements Γjkl(ẑ(a

j
j(ẑ))∆

k
j ẑ
k(t). In the above formulas,

∆k
j ẑ(t) = ẑ(t ∧ akj+1(ẑ))− ẑ(t ∧ akj (ẑ)) ∆n

i (t) = t ∧ akj+1(ẑ)− t ∧ akj (ẑ)

It is lengthy but straightforward that `k defined by (4.5) and (4.6) is continuous.
Now, `(ẑ) is defined to be the limit in Ω2 of `k(ẑ) where it exists and a zero function
otherwise. By construction, ` is measurable. It follows from Theorem 1 on page 126
of [20] that ` ◦ z is a modification of ỹ. For this, note restriction to a probability
subspace preserves local characteristics of semimartingales.

Admittedly, the proof of Theorem 4.1 has a somewhat terse form. This should not
obscure the fact that its application in a practical implementation is straightforward.
Given a path Ŷ , the prescription is to apply the numerical scheme given by (4.5) and
(4.6) in each chart Uκ visited by Ŷ . Adding the resulting contributions ŷ together
yields a pathwise local uniform approximation of y. The use of event based sampling
is expressed in the proof through the functions akj . Indeed, it is enough to sample the

path Ŷ when its local representative ẑ crosses the levels j2−k, j ∈ N.

5. Example of a parallelisable manifold. Based on Theorem 2.1, it is pos-
sible to claim that (2.7) is a generalisation of (1.4). Indeed, (2.7) applies in a far
more general context than (1.4) and realises the same objective of reduction to an
additive white noise model. However, this claim is not entirely satisfactory. If (2.7)
is a generalisation of (1.4), then it should be possible to apply (2.7) directly in the
context of (1.3) and obtain (1.4).

In the current section, it is shown this is true. It turns out that, from a geometric
point of view, (1.4) corresponds to the application of (2.7) to an elliptic diffusion in a
parallelisable manifold.

To begin, note that (1.3) can be written in the form (1.5). Returning to the
notation of Subsection 1.1, it is well known û = uiσi where σi is the matrix of
infinitesimal counterclockwise rotation around the ith coordinate axis. To each σi
there corresponds a left invariant vector field on SO(3). This is noted Σi, with
Σi(R) = Rσi for R ∈ SO(3). With this notation, (1.3) becomes

dYt = Htdt+ Σi(Yt) ◦ dBit Ht = xitΣi(Yt) (5.1)

Recall that (σi; i = 1, 2, 3) is a basis of so(3). It follows that Y is an elliptic diffusion in
SO(3); that is, (5.1) is indeed a special case of (1.5). This is since (Σi(R); i = 1, 2, 3) is
a basis of TRSO(3) for each R ∈ SO(3). The application of (2.7) to (5.1) only depends
on this last fact. Thus, it is interesting to study the following general situation.

In the setting of (1.5), assume the manifold M is parallelisable. Precisely, that
(Σi(p); i = 1, . . . ,m) is a basis of TpM for each p ∈M ; thus m = d. Now, (2.11) and
(2.12) simplify to the following relations

〈Σi,Σj〉 = δij ∇ΣiΣj = 0 (5.2)

The latter identity is a kind of special case of (2.14). Let (Ei; i = 1, . . . ,m) be a
parallel orthonormal frame. It follows from (2.6) and (2.4) that

d〈Eit ,Σj(Yt)〉 = 〈Eit ,∇◦dY Σj(Yt)〉 = 0
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For the second equality, note from (5.2) that ∇KΣj(p) = 0 for p ∈M and K ∈ TpM .
Thus, there exists an orthogonal matrix a such that

Eit = aijΣj(Yt) (5.3)

In this case, (2.7) reads

yit =

∫ t

0

〈aijΣj(Ys), ◦dY 〉 (5.4)

This formula should be compared to the remark made after the proof of Theorem
2.1, regarding the difference between (1.4) and (2.7). In (5.4), the (Ei) do not appear
explicitly. Thus y can be computed directly from Y , just like in (1.4). Moreover, it
follows from (2.1) and (5.2) that

dyit = aij

{
hjtdt+ dBjt

}
hjt = 〈Σj(Yt), H〉 (5.5)

which is a special case of (2.15).
Now, it will be shown that (5.4) applied to (5.1) yields (1.4). For simplicity, put

aij = δij . This corresponds to a choice of initial condition. The Riemannian metric
〈·, ·〉 will be computed as

〈E,K〉 = −1

2
tr
(
R−1ER−1K

)
E,K ∈ TRSO(3) (5.6)

here tr denotes the trace of a matrix. This is compatible with (5.2) since tr(σiσj) =
−2δij , by a direct calculation. It follows from (5.4) and (5.6) that

yit =

∫ t

0

〈Σi(Ys), ◦dY 〉 =

〈
σi,

∫ t

0

Y −1
s ◦ dYs

〉
This immediately implies (1.4) where yt = yitσi.

The study of (1.3), or equivalently (5.1), by considering the case of a parallelisable
manifold M is somewhat unusual. More often, these equations are studied as a special
case of left invariant diffusions defined on Lie groups; see for example page 27 of [28].
If M is taken to be a Lie group, then the connection given in (5.2), (the Le Jan-
Watanabe connection corresponding to (Σr; i = 1, . . . ,m)), is known as the Cartan-
Schouten (−)-connection. In this case, the antidevelopment y has been introduced
under the name of Lie group stochastic logarithm, in [29, 30].

6. Remarks on modeling and application. The existing mathematical liter-
ature concerning filtering with observation in a manifold relies in a fundamental way
on stochastic differential geometry. On the other hand, applying the machinery of
stochastic differential geometry depends on a choice of affine connection. Thus, from
a mathematical point of view, the main idea in the current paper is to use the Le
Jan-Watanabe connection instead of the Levi-Civita connection when considering the
model (1.5). In effect, this is the key ingredient in both Theorems 2.1 and 3.1.

As noted in Subsection 1.1, the engineering literature had already “discovered”
the Le Jan-Watanabe connection in the special case of processes in matrix Lie groups.
A rigorous form of this statement was given in Section 5 and related to the general
case of abstract Lie groups.

Theorems 2.1 and 3.1 show that the simple and meaningful results arising in the
matrix Lie group case extend to arbitrary manifolds, provided the Le Jan-Watanabe
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connection is used. In principle, this means existing engineering applications which
consider processes in matrix Lie group can be extended to a far more general context.
However, in order to proceed in a concrete way, it is necessary to distinguish the
engineering applications in which elliptic diffusions in manifolds will constitute useful
mathematical models. This is an open question, requiring some kind of theory as to
the physical (or biological, etc) origin of these diffusions. Still, it is possible to give a
more specific answer.

The differentiable manifolds usually of interest to engineering are those related
in some direct way to matrix Lie groups. The usual examples are Grassmann or
Stiefel manifolds of various dimensions. These support usual mathematical models
in telecommunications, array signal processing and path planning for mechanical sys-
tems. The reason why these manifolds arise is the existence of extensive symmetries
in many engineering dynamical systems. While diffusions in Grassmann or Stiefel
manifolds are closely related to diffusions in matrix Lie groups, they do not admit an
easy reduction as the one described in Subsection 1.1. This observation should lead
to concrete examples of applications which stand to benefit from Theorem 2.1.

In view of such applications, some general remarks are possible. The chosen math-
ematical approach to an engineering application should take into account, among other
things, performance requirements and the availability of data. In the current paper,
the proposed implementation of Theorem 2.1 is given by Theorem 4.1. This at least
has the property of being a pathwise construction. However, even in a purely discrete
time situation, Theorem 2.1 can be used to motivate pertinent implementations.

It might be considered undesirable that Theorem 4.1 uses local coordinate charts
rather than directly assuming given an embedding in Euclidean space. Now, the use
of local coordinate charts is completely general. Also, it should be noted that even
when a manifold is naturally embedded in Euclidean space, there is no guarantee
that the embedding gives a simple description of parallel transport with respect to
the Le Jan-Watanabe connection. However, this is the central ingredient in Theorem
2.1. For either Grassmann or Stiefel manifolds, there are several available choices of
atlases with the properties necessary for Theorem 4.1 and using them presents no
special difficulty. In general, the use of local coordinate charts offers the advantage
that numerical errors do not lead to points “falling off” the manifold.

A reasonable generalisation of the model (1.3) is to the case where the resulting
diffusion may be semielliptic rather than elliptic. Indeed, this already arises quite
often for processes in matrix Lie groups; for which it can be dealt with using the same
approach as in Subsection 1.1.

Under some additional requirements, the reduction of semielliptic diffusions in a
way similar to Theorem 2.1 can also be realised using the Le Jan-Watanabe connec-
tion. However, the resulting antidevelopment is not anymore given by an additive
white noise model. This is because, roughly speaking, noise only appears in a sub-
space of the tangent space. A natural question would be to find the filtering equations
giving the corresponding generalisation of Theorem 3.1. This could be the basis for
further extension of the current approach.

The reduction of a filtering problem with observation in a manifold to an equiva-
lent classical filtering problem may also be used to answer theoretical question. Indeed,
the classical setting offers well known results concerning issues such as robustness, ex-
istence of smooth densities and approximation. It should be possible to transform all
of these into similar results for the original problem with observation in a manifold.
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24 (1988), pp. 285–304.
[12] G. S. Chirikjian, Stochastic models, information theory and Lie groups, Volume 1, Birkhäuser.
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